tag²: isomeria

L’isomeria degli alcheni

Gli idrocarburi alifatici insaturi possono presentare vari tipi di isomeria, per cui composti aventi la stessa formula grezza hanno struttura e proprietà totalmente diverse.
Oltre all’isomeria di struttura comune agli alcani, gli alcheni presentano altri due tipi di isomeria: l’isomeria di posizione e l’isomeria geometrica:

1) isomeria di struttura: si manifesta, come per gli alcani, quando un idrocarburo ha catena aperta o catena ramificata;

2) isomeria di posizione: si ha quando due alcheni hanno la stessa formula molecolare e la stessa formula di struttura, ma differiscono soltanto per la posizione del doppio legame. Continua a leggere&#187

13 Maggio 2009 Pubblicato da Francesca Brigida 0

Molteplici centri di asimmetria: oltre gli antipodi ottici

In un composto in cui sono presenti più atomi di carbonio asimmetrici si possono avere più coppie di enantiomeri. Dalla formula di Van’t Hoff si ricava che il numero complessivo di stereoisomeri dipende dal numero degli atomi di carbonio asimmetrici presenti nella molecola. La formula di Van’t Hoff è la seguente:

n° di stereoisomeri = 2n

dove n è il numero di C*.
Le coppie di enantiomeri possibili sono pari alla metà del numero di stereoisomeri.
Il composto 2-bromo-3clorobutano, ad esempio, avendo due stereocentri può esistere in 4 stereoisomeri.
Se si costruiscono i modelli molecolari dei quattro stereoisomeri sarà facile capire che le configurazioni a e a’ sono l’una l’immagine speculare dell’altra e non sono sovrapponibili, perciò dette enantiomere, come pure le configurazioni b e b’.
Le due configurazioni, però non sono enantiomere tra loro ma solo stereoisomeri, in quanto la configurazioni a e a’ non sono immagini speculari di b e b’, e viceversa.
Esse vengono dette diastereoisomeri o diasteromeri, perché non tutti gli stereoisomeri sono antipodi ottici.
Essi hanno una differente attività ottica perché hanno un diverso potere rotatorio; hanno diverse proprietà fisiche, quali il punto di fusione, il punto di ebollizione e la solubilità; mentre hanno simili, ma non identiche, proprietà chimiche. Queste differenze facilitano la separazione da una loro eventuale miscela.
Quando in una molecola sono presenti due atomi di carbonio asimmetrici ai quali sono legati gli stessi sostituenti, la situazione si presenta diversamente.
Qualsiasi molecola che possiede un piano di simmetria è detta forma meso.
E’ questo il caso particolare del composto 2,3-diclorobutano.
La molecola del 2,3-diclorobutano, avendo 2C* equivalenti, presenta soltanto tre stereoisomeri: due enantiomeri (a e a’ ) otticamente attivi e una meso (b) otticamente inattiva. La configurazione (b) in quanto capovolgendola sul piano del foglio risulta a essa sovrapponibile.
Ancora una volta con l’ausilio di modelli molecolari è possibile osservare che tale composto, pur presentando due stereocentri, risulta interamente un composto achirale in quanto, avendo nella sua molecola un piano di simmetria, risulta sovrapponibile alla sua immagine speculare.
In questo caso si dice che i due stereocentri annullano reciprocamente i loro contributi all’attività ottica rendendo il composto inattivo per una sorta di compensazione interna.

12 Dicembre 2008 Pubblicato da Francesca Brigida 0

L’isomeria di struttura

I composti organici, compresi gli idrocarburi, presentano il fenomeno dell’isomeria.
Quando un idrocarburo è costituito da una catena con un numero di atomi di carbonio superiore a tre, si verifica tale fenomeno. Quindi, a volte due composti rappresentati dalla stessa formula bruta possono essere radicalmente diversi, come accade nel caso dell’alcol etilico e dell’etere etilico. La loro formula bruta è C2H6O.
Pertanto, gli atomi di carbonio possono legarsi tra loro per formare lunghe catene lineari (gli n-alcani), ma possono anche dare strutture più complesse e ramificate.
L’esempio più semplice di alcano ramificato che possiamo trovare in chimica organica è l’isobutano. L’isobutano e il butano sono isomeri di struttura. Il butano in condizioni standard è un gas e ha punto di ebollizione -0,6 °C. Invece l’isobutano è il suo isomero che, pur avendo la stessa formula molecolare, ha caratteristiche chimico-fisiche diverse da quelle del butano normale: il suo punto di ebollizione, ad esempio, è -10 °C.
Si definiscono isomeri (dal greco isos: uguale e meros: parte) i composti aventi la stessa formula molecolare (o bruta) ma diversa formula di struttura.
In pratica, due isomeri di struttura sono formati dagli stessi atomi, che però possono essere legati tra loro in diverse combinazioni. Questo fenomeno è piuttosto esteso in chimica organica: oltre al butano, il pentano (C5H12) possiede tre forme isomeriche; il esano (C6H14) possiede cinque forme isomeriche; possono essere calcolati fino a 75 isomeri per il decano (C10H22) e si possono prevedere 6,5 〮10(alla 13esima).
La diversa struttura che caratterizza gli isomeri spesso conferisce loro proprietà fisiche e chimiche diverse.
Esistono diversi tipi di isomeria che si possono distinguere in due categorie fondamentali:
isomeria di posizione o di catena: in tali isomeri gli atomi occupano nella molecola posizioni diverse;
stereoisomeria: in questo caso gli isomeri, generalmente chiamati stereoisomeri, differiscono perché gli atomi delle loro molecole sono legati nella stessa sequenza, ma diversamente orientati nello spazio.
La stereoisomeria comprende gli isomeri conformazionali e gli isomeri configurazionali. Questi ultimi, a loro volta, possono essere distinti in isomeri geometrici e isomeri ottici.
Gli atomi di carbonio che sono legati a un solo altro atomo di carbonio, come quelli posti agli estremi di una catena lineare, sono detti atomi primari; mentre quelli intermedi, che sono cioè legati ad altri atomi due atomi di carbonio, sono detti atomi secondari e, infine, quelli che, in una catena ramificata, sono legati ad altri tre oppure quattro atomi di carbonio, sono detti rispettivamente atomi terziari o quaternari.
Il butano normale presenta due atomi di carbonio primari e due secondari.
L’iso-butano ha tre atomi di carbonio primari e un atomo di carbonio terziario.
Il tipo di isomeria che si instaura quando la catena di atomi di carbonio di un composto passa dalla forma lineare alla forma ramificata, è detta isomeria di struttura.
Per rappresentare i diversi isomeri tornano utili le formule condensate, dette anche formule razionali. Prima di utilizzare tali formule è opportuno sapere che le formule di struttura ordinarie rappresentano solo in modo approssimato le strutture reali delle molecole. Le molecole sviluppano le loro strutture nello spazio tridimensionale rispettando canoni geometrici piuttosto rigorosi, mentre le formule di struttura ordinarie utilizzano uno spazio bidimensionale e solitamente rappresentano soltanto il legame fra gli atomi ma non il modo con cui gli atomi si legano. Nel caso degli alcani, ad esempio, gli angoli di legame, determinati dall’utilizzo di orbitali ibridi sp3, sono di 109°28’ e la geometria delle loro molecole è basata sul modulo del tetraedro. Le formule di struttura, invece, non forniscono queste informazioni.
Le formule di struttura condensate o razionali non consentono di osservare le molecole nello spazio, ma possono qualificare la natura del composto e di distinguere fra loro i diversi isomeri.

12 Dicembre 2008 Pubblicato da Francesca Brigida 0

Contatti

Per qualsiasi tipo di informazione, suggerimento, proposta, critica o richiesta, scrivici a info@chimicaorganica.net

Tag popolari

acidi Aforismi alcani alcheni anidride carbonica antipodi ottici atomi primari atomi secondari atomi terziari basi butano carbonio carbonio asimmetrico chimica chimica organica chiralità delocalizzazione elettronica dispense chimica doppio legame frasi GPL idrocarburi idrocarburi insaturi idrocarburi saturi isomeri isomeria isomeria di posizione isomeria di struttura isomeria geometrica isomeria ottica isomeri conformazionali isomeri geometrici laboratorio Lavoisier legame pigreco metano paraffine radicali liberi reazioni reazioni organiche serie omologa sostituenti stereoisomeri stereoisomeria teoria chimica