Autore

La sicurezza in laboratorio

Solo da qualche anno il problema dell’agire in sicurezza si è posto con forza in tutti i settori dell’attività umana.
Il laboratorio di chimica è un luogo in cui si cerca di conoscere come funziona il mondo della natura, partendo, però, dal presupposto che ogni esperimento presenta aspetti di rischio; quindi occorre impostare le proprie azioni avendo cura di raccogliere prima tutte le informazioni sui materiali che si desidera utilizzare e sulle procedure da mettere in pratica.
In particolare, sono essenziali le indicazioni che l’insegnante deve fornire e che ogni studente è tenuto a seguire, per evitare il verificarsi di eventi che possono recare danno ad attrezzature e a persone.
Gli elementi essenziali della sicurezza sono la capacità di riconoscere il rischio e di valutarne le conseguenze.
L’attenzione alla sicurezza deve essere continua e deve costituire una pratica integrante dell’attività di laboratorio e deve diventare una sorta di cultura personale di tutti gli operatori che lavorano in laboratorio, che devono condividere le norme di comportamento, essere coerenti nel seguire tali norme, avere appreso con chiarezza le conoscenze relative ai pericoli e ai rischi.
Prima di cominciare qualsiasi attività in un laboratorio, è necessario apprendere alcune nozioni fondamentali sulla sicurezza. Il fattore umano è direttamente responsabile della maggioranza degli incidenti di laboratorio. Ciò significa che si possono evitare, o quanto meno ridurre, i rischi per sé e per gli altri soltanto seguendo opportune norme generali di comportamento e informandosi preventivamente sulle proprietà delle sostanze utilizzate.
Le fonti di rischio possono essere numerose e le precauzioni devono essere prassi normale e spontanea di comportamento.
E’ importante conoscere gli interventi da adottare nel caso si verifichino incidenti per cause impreviste: l’efficacia dei rimedi è in effetti tanto maggiore quanto più tempestivo è l’intervento.

15 Dicembre 2008 Pubblicato da Francesca Brigida commenta!

Gli alcheni: il doppio legame

Tra gli idrocarburi alifatici, oltre agli alcani e ai cicloalcani, che sono saturi, ne esistono altri che sono insaturi, aventi nella molecola uno o più legami tra atomi di carbonio.

Gli idrocarburi insaturi sono specie chimiche in cui solo una parte dei legami disponibili è saturata da atomi di idrogeno. Gli alcheni appartengono alla classe degli idrocarburi insaturi perché presentano un doppio legame carbonio-carbonio e quindi il numero di atomi di idrogeno in essi contenuti è inferiore a quello degli alcani con egual numero di atomi di carbonio.
Ad esempio, il termine a quattro atomi di carbonio ha la formula molecolare C4H8, mentre il corrispondente alcano ha la formula C4H10 perché ha due atomi di idrogeno in più.

Gli alcheni sono idrocarburi contenenti due atomi di carbonio sp2 tra i quali si instaura un doppio legame. La loro formula generale è CnH2n.

La presenza del doppio legame impedisce la libera rotazione dei carboni e costringe gli atomi che lo formano e quelli a essi legati a stare su un unico piano. Inoltre l’ibridazione sp2 impone angoli di legame di 120°.

Il nome tradizionale del nome del gruppo è olefine: il termine deriva dal fatto che questi idrocarburi, sommando gli alogeni, si trasformano in sostanze liquide di aspetto oleoso. In particolare deriva dal comportamento dell’etilene, il più semplice alchene che produce una sostanza di consistenza oleosa reagendo con il cloro.

Le regole IUPAC adoperate per la nomenclatura degli alcheni sono simili a quelle usate per gli alcani, ma occorre aggiungere qualche altra regola per consentire di assegnare il nome e fissare la posizione del doppio legame nella catena:

la presenza del doppio legame viene indicata dal suffisso -ene che sostituisce il suffisso ano del corrispondente alcano; per cui il nome dell’alchene si ottiene dal nome del corrispondente alcano. Ad esempio all’etano (C2H6) corrisponde l’etene o etilene (C2H4);
la numerazione degli atomi di carbonio nella catena deve essere fatta in modo che gli atomi di carbonio portanti il doppio legame abbiano i numeri più piccoli possibili; sebbene il doppio legame unisca due atomi di carbonio, per assegnare la sua posizione basta indicare il numero del primo atomo di carbonio impegnato nel doppio legame. Pertanto, l’alchene sarà denominato 1-butene perché il doppio legame che si è instaurato è tra il carbonio 1 e il carbonio 2;
– se alla catena sono anche legati dei gruppi alchilici, questi ultimi saranno contrassegnati da numeri corrispondenti agli atomi di carbonio ai quali sono legati.

All’etene segue, con tre atomi di carbonio, il propene o propilene con formula C3H6.

Bisogna inoltre ricordare che negli alcheni solo gli atomi di carbonio che partecipano al doppio legame sono ibridati sp2: gli altri sono sempre ibridati sp3.
Nello specifico, quando il carbonio forma doppi legami non può utilizzare, come nel caso degli alcani, i suoi quattro orbitali ibridi sp3. Anche il carbonio alchenico è ibridato, ma non tutti e quattro i suoi orbitali atomici di partenza si mescolano a formare orbitali ibridi: un orbitale atomico di tipo p deve infatti rimanere invariato per partecipare alla formazione del doppio legame.
I restanti orbitali (un orbitale s e due orbitali p) si mescolano e formano tre orbitali ibridi isoenergetici orientati a 120° verso i vertici di un tetraedro equilatero che prendono il nome di orbitali ibridi sp2. Il piano degli orbitali ibridi è perpendicolare al piano su cui giace l’orbitale p rimasto non ibridato. Due dei tre orbitali ibridi sp2 sono utilizzati per legami semplici; il terzo orbitale ibrido sp2 partecipa insieme al p non ibridato alla formazione del doppio legame.
Quando la catena di carbonio si allunga, è necessario indicare la posizione del doppio legame.

Il radicale che si ottiene sottraendo un atomo di idrogeno a un alchene, prende la desinenza in -enile. Ad esempio:

– se dall’etano CH3―CH3 saturo si ricava il radicale etilico o etile CH3―CH2―, dall’etene CH2=CH2 si ricava l’etenile CH2=CH― chiamato comunemente vinile o radicale vinilico;
– dal propene CH2=CH―CH3 si ricava il 2-propenile CH2=CH―CH2― chiamato comunemente allile o radicale allilico.

Il nome 2-propenile deriva dal fatto che nei radicali la numerazione comincia sempre dall’atomo di carbonio capace di legarsi a una catena principale.

Se nella molecola degli alcheni compare più di un doppio legame, essi vengono detti polieni e la loro formula generale varia con il numero k dei doppi legami presenti nella molecola. Ricordando che ogni doppio legame comporta due atomi di idrogeno in meno rispetto agli alcani saturi, un poliene ha (2n + 2) – 2k atomi di idrogeno, quindi la formula generale è CnH(2n+2)-2k.
I polieni più comuni sono:

– gli alcheni con due doppi legami e formula generale CnH2n-2, detti dieni;
– gli alcheni con tre doppi legami e quindi formula generale Cn H2n-4, detti trieni.

Essi si scrivono indicando il primo atomo di carbonio dei doppi legami.
Di particolare interesse sono i dieni: essi vengono ottenuti in grande quantità dal petrolio; costituiscono la materia prima per la produzione della gomma sintetica.
In generale, però, si può dire che tutti gli idrocarburi insaturi sono di notevole interesse per le reazioni di polimerizzazione.

L’etene è l’idrocarburo insaturo più importante dal punto di vista industriale: oltre che per la produzione di materie plastiche è utilizzato anche per la sintesi di alcool etilico.

Fanno parte degli alcheni anche i cicloalcheni. Analogamente ai cicloalcani, i cicloalcheni sono idrocarburi con struttura ad anello in cui è presente almeno un doppio legame tra due atomi di carbonio. La formula generale dei cicloalcheni è CnH2n-2.

14 Dicembre 2008 Pubblicato da Francesca Brigida commenta!

Usi e fonti industriali degli alcani

Le principali fonti degli alcani sono i gas naturali e il petrolio, che provengono dalla decomposizione e dall’azione geologica che, attraverso milioni di anni, hanno trasformato i complessi composti presenti negli organismi viventi in una miscela di idrocarburi. Tale miscela può essere costituita da molecole a un atomo di carbonio fino a molecole contenenti da 30 a 40 atomi di carbonio e talvolta anche fino a 100.

Il gas naturale contiene soltanto gli alcani più volatili, cioè quelli alcani che hanno peso molecolare più basso. Esso è costituito principalmente da metano, unito a piccole quantità, che variano a seconda della provenienza, da altri alcani inferiori come l’etano, il propano e il butano.
Solo il gas naturale estratto dal mare del Nord contiene esclusivamente metano, mentre quello estratto in Pennsylvania contiene metano, etano e propano nel rapporto 12 : 2 : 1 con il 3% in totale di alcani superiori.
Talvolta si vede il metano gorgogliare sulla superficie degli acquitrini e pertanto esso è chiamato anche gas delle paludi.
La maggior parte del metano estratto viene adoperato come combustibile. Quello estratto in Italia è tanto puro (98%) da non richiedere ulteriori trattamenti prima della distribuzione.
Trova impiego nell’industria sia come combustibile sia come materia prima. E’ molto usato come carburante per l’autotrazione ed è in continuo aumento il consumo per uso domestico: parecchi centri urbani, infatti, stanno procedendo alla metanizzazione delle loro reti di distribuzione.

Nel 1981 è stato inaugurato un metanodotto, lungo 3.000 km, che collega il nostro Paese all’Algeria.
Anche il propano e il butano vengono usati in miscela come combustibili allo stato liquido e vengono commercializzati in bombole sotto pressione con la sigla GPL (Gas di Petrolio Liquefatti), soprattutto nelle località prive di distribuzione di altri gas combustibili.
Il petrolio, che letteralmente significa “olio di pietra”, deve il suo nome al fatto che si presenta come un liquido denso che impregna rocce porose.
Già noto ai tempi dei Babilonesi e degli Egizi che ne facevano un grande uso, ad esempio imbalsamare i cadaveri, cementare i blocchi di pietra, il cosiddetto oro nero si trova anche nei giacimenti superficiali.
E’ solo verso la seconda metà del 1800 che si può considerare la nascita del petrolio come materia prima nella nostra società e nella nostra economia, precisamente quando presso Titusville in Pennsylvania entrò in produzione il primo pozzo scavato da E.L. Drake: il petrolio era stato trovato alla profondità di 21 m (27 agosto 1859).

Per quanto riguarda la sua composizione, in passato si è molto discusso sull’origine di questa materia prima e si sono contrapposte due ipotesi: origine inorganica e origine organica.
Secondo l’ipotesi organica il petrolio deriva dalla decomposizione delle sostanze contenute nei resti di piante, animali e microrganismi planctonici accumulatisi su fondali lacustri o marini scarsi di ossigeno, nei quali avviene una prima demolizione delle macromolecole organiche, ossia proteine, zuccheri, grassi, grazie all’azione di batteri anaerobi. Con l’arrivo di nuovi sedimenti si ha un progressivo sprofondamento della biomassa parzialmente demolita.
All’aumentare della temperatura e della pressione si ha la rottura dei legami chimici più deboli, eliminando in questo modo l’ossigeno e l’azoto, e le molecole organiche diventano sempre più piccole.
Per la formazione del petrolio le profondità ottimali sono comprese tra 2500 m e 4000 m, con temperature comprese tra 60 °C e 150 °C.
A profondità superiore invece è preferibile la formazione del metano, contenente un solo atomo di carbonio per molecola.
I tempi necessari per la formazione del petrolio dipendono fondamentalmente dalla temperatura: da 5 a 100 milioni di anni.

Successivamente il petrolio migra dalla roccia madre, dove si è formato, in rocce adiacenti permeabili: la pressione dei sedimenti che col tempo si accumulano, butta via il fluido presente nel sottosuolo (acqua, petrolio, gas). Gli idrocarburi tendono a stanziarsi verso la superficie, accumulandosi in particolari rocce che possono funzionare da serbatoio se sono protette da strati di rocce impermeabili, dette rocce di copertura, disposte in modo da formare una specie di trappola.
Pertanto, il petrolio non è contenuto in speciali caverne del sottosuolo ma occupa gli interstizi più o meno grandi delle rocce serbatoio.
La presenza del petrolio di colesterolo, di derivati della clorofilla o di pollini è una prova fondamentale a sostegno dell’ipotesi organica.
La ricerca del petrolio richiede l’individuazione delle formazioni geologiche favorevoli alla formazione di trappole.
I giacimenti attualmente sfruttati si trovano alle profondità inferiori di 3000 m.

Il petrolio così come viene estratto è detto greggio ed è costituito da una complessa miscela di idrocarburi solidi, liquidi e gassosi, contenente anche piccole quantità di altri composti organici in cui sono presenti ossigeno, azoto, zolfo e sali minerali, sedimenti e acqua.
A temperatura ambiente, il petrolio si presenta come un liquido oleoso, denso, infiammabile e di colore variabile dal giallastro al nero.
Il contenuto di idrocarburi nel petrolio dipende dalla sua provenienza geografica e può variare dal 97-98% per i greggi della Pennsylvania a valori molto più bassi, dell’ordine del 50%, per i greggi del Messico.
Gli idrocarburi presenti sono gli alcani, i cicloalcani e gli idrocarburi aromatici; sono invece raramente presenti gli alcheni e i dieni, mentre risultano praticamente assenti i dieni.
L’analisi percentuale degli elementi che costituiscono il petrolio greggio varia anch’essa da un tipo all’altro, ma solitamente rientra negli standard.
La sua densità oscilla mediamente tra 750 e 950 kg/m3 ma esistono anche petroli più densi dell’acqua per la presenza abbondante di prodotti bituminosi. La composizione e le caratteristiche della miscela idrocarburica dipendono anch’esse dalla provenienza del greggio.
In alcune miscele predominano gli idrocarburi leggeri e tra essi gli idrocarburi gassosi e liquidi molto volatili, facilmente infiammabili, altri invece non contengono sostanze volatili ma presentano in preponderanza idrocarburi pesanti.

E’ ormai stato accertato che esso deriva dalla decomposizione di organismi animali e vegetali, verificatasi in assenza di aria nel corso di centinaia di migliaia di anni, per opera di enzimi prodotti da batteri anaerobi. I differenti tipi di petrolio esistenti hanno pertanto una composizione che dipende dalle condizioni di formazione e dal tipo di organismi da cui hanno avuto origine.
Indipendentemente dalla sua composizione, il petrolio si trova depositato in rocce porose, in genere arenarie, attorniate da strati impermeabili.
All’interno delle arenarie si distinguono tre strati: in alto sono accumulati i gas, nella zona centrale c’è il petrolio, che sovrasta lo strato più profondo ricco di acqua salata.
Dopo la sua estrazione, il petrolio viene sottoposto a lavorazione per separare le varie frazioni commercialmente sfruttabili dall’acqua salata e per allontanare le sostanze indesiderate, come lo zolfo (fino al 5%) e i composti azotati, ossigenati, ecc. Le complesse operazioni di separazione e trattamento delle varie frazioni vengono indicate nel loro insieme col nome di raffinazione, che si effettua con la cosiddetta distillazione frazionata.
La prima operazione consiste  nell’eliminazione dell’acqua e solidi sospesi; successivamente viene sottoposto a distillazione primaria (topping), che si realizza immettendo il greggio, a circa 360 °C, in una colonna di distillazione a piatti, in cui la temperatura è decrescente dal basso verso l’alto.
Un primo grossolano frazionamento del greggio si ottiene prelevando il liquido dalle diverse altezze della colonna.
Alla base della torre restano gli idrocarburi più pesanti, a più alto punto di ebollizione; nella zona intermedia condensano gli idrocarburi con punto di ebollizione intermedio; nella parte alta condensano gli idrocarburi leggeri aventi bassa temperatura di ebollizione.
Il residuo viene ulteriormente frazionato in un sistema di distillazione sotto vuoto (il vacuum). Si ricavano ancora gasoli, oli lubrificanti e ciò che rimane è bitume, utilizzato per i manti stradali e per impermeabilizzazioni in edilizia.
Come il residuo, anche le altre frazioni del topping devono subire una serie di trattamenti prima di essere immesse nel consumo.
Per esempio, poiché le benzine, che sono il prodotto più richiesto dal mercato, costituiscono raramente più 15% di tutto il greggio, sono stati messi a punto processi come il cracking catalitico, che consentono di demolire le frazioni pesanti, cioè quelle costituite da catene idrocarburi a catena più lunga.
Operando a 400-450 °C, in presenza di catalizzatori di natura acida, la catena lunga in questi idrocarburi viene spezzata in un punto qualsiasi, con formazione di un altro alcano e un alchene.
Le miscele di alcani e alcheni ottenute con questo processo, unite agli alcani di testa del topping, vengono poi sottoposte a un processo, noto con il nome di alchilazione, con il quale alcani e alcheni reagiscono tra loro.
Con questo processo si ottengono alcani ramificati che costituiscono i componenti ideali delle “benzine avio”, cioè di benzine bassobollenti destinate a motori aeronautici, i cui carburanti sono esposti a basse temperature.
Vengono effettuati anche processi di ristrutturazione molecolare, indicati con il termine reforming, con i quali si ottengono idrocarburi aromatici, cicloalcani e paraffine a catena ramificata a spese di alcani lineari.
Come importante sottoprodotto del reforming si ottiene anche idrogeno.
Senza l’energia chimica fornita dai combustibili ricavati dalla lavorazione del petrolio, entrerebbero in crisi settori vitali della nostra società, come per esempio quelli che dipendono in larga misura dal trasporto su strada.
Non esiste solo un problema di quantità di energia ma anche uno, spesso più importante, di qualità dell’energia.
Perché si parla tanto di crisi energetica e si lanciano allarmi sul rischio di esaurimento dei giacimenti di petrolio se la legge di conservazione dell’energia ci assicura che la quantità complessiva di energia resta sempre uguale? La questione preoccupante non è la quantità ma la qualità dell’energia. Per chiarire questo aspetto, bisogna tener conto di cosa avviene dal punto di vista energetico quando, dopo per esempio aver fatto il pieno della benzina, si intraprende un viaggio in auto. Durante la reazione di combustione dei componenti della benzina, che ha luogo nel motore, l’energia che era immagazzinata sotto forma di energia chimica nelle molecole dei componenti iniziali viene trasformata in energia termica che si disperde lungo il cammino dell’auto.
La quantità totale  di energia non cambia, ma l’energia che prima era concentrata nei componenti della benzina si ritrova infine distribuita più o meno uniformemente nell’ambiente.
Quando invece l’energia si presentava in forma concentrata, era possibile compiere lavoro, una volta che l’energia si è dispersa nell’ambiente non è possibile utilizzarla per compiere un lavoro, inevitabilmente la quantità dell’energia peggiora, in quanto essa si degrada.
L’energia che attualmente è immagazzinata nel petrolio è il risultato di un lunghissimo processo di trasformazione delle molecole organiche di organismi vissuti in epoche passate, che hanno fabbricato molecole ad alto contenuto energetico sfruttando direttamente (se autotrofi) o indirettamente (se eterotrofi) l’energia della luce solare mediante la fotosintesi. Il petrolio è per noi molto importante perché costituisce una fonte di facile impiego di energia concentrata. Attualmente, in particolari ambienti del nostro pianeta il processo di formazione del petrolio è in atto, ma si tratta di un processo talmente lento, se rapportato alla durata della vita umana, che non si può fare alcun conto su di esso.

14 Dicembre 2008 Pubblicato da Francesca Brigida commenta!

Il cracking

Il cracking è il processo che spezza in due o più parti la catena di un idrocarburo, a causa della grande stabilità dei legami σ tra gli atomi di carbonio, il processo richiede notevoli quantità di energia oppure l’uso di opportuni catalizzatori.

Esistono due tipi di cracking, uno termico e l’altro catalitico.
Nel cracking termico si riscaldano gli alcani a temperatura superiore a 600 °C.
Nel cracking catalitico invece si riscaldano gli alcani a una temperatura di circa 400 °C in presenza di catalizzatori acidi (silice e allumina).
In entrambi i casi si ottengono miscele di alcani a catena più corta, idrogeno e idrocarburi insaturi, cioè con doppi legami C=C, che possono essere successivamente separati per distillazione frazionata.

Gli idrocarburi si ricavano dal petrolio greggio contenente in superficie idrocarburi gassosi (da 1 a 4 atomi di C), mentre la miscela liquida sottostante viene estratta e separata per distillazione, basandosi sul diverso punto di ebollizione dei componenti.

La distillazione del petrolio greggio fornisce:

– a 70 °C l’etere di petrolio, una miscela di idrocarburi da C5 a C7;
– a 130 °C la benzina, una miscela di idrocarburi da C6 a C12;
– a 230 °C il kerosene, una miscela da C9 a C15;
– a 320 °C il gasolio, una miscela da C14 a C18;
– a 380 °C l’olio combustibile, una miscela da C16 a C20;
– dopo distillazione sotto vuoto, olio pesante da C20 a C70;
– un residuo contenente paraffine, bitume, asfalto.

La benzina prodotta è meno del 20% e per aumentarne la produzione è necessario spezzare la catena di idrocarburi più pesanti per ottenere frammenti più corti a basso peso molecolare, che appunto costituiscono la benzina.
Le benzine vengono classificate secondo il numero di ottano, che misura il grado di comprimibilità di una miscela aria-benzina. Per una buona benzina, il numero di ottano deve essere alto, affinché la miscela non detoni nel cilindro del motore per semplice compressione, ma solo se la combustione è innescata dalla scintilla delle candele.
Il numero di ottano è basso per gli alcani lineari, alto per quelli a catena ramificata o a catena chiusa, perciò la comprimibilità della benzina viene confrontata con quella dell’eptano normale, cui si attribuisce numero di ottano 0 e quella dell’isottano (2,2,4-trimetil-pentano), cui si attribuisce numero di ottano 100. Una benzina con numero di ottano 90 corrisponde a una miscela composta per il 90% da isottano e per il restante 10% da eptano.
Si ottengono benzine ad alto numero di ottano con il reforming catalitico, riscaldando gli idrocarburi a 500 °C e a 20 atm di pressione in presenza di catalizzatore di platino.

14 Dicembre 2008 Pubblicato da Francesca Brigida commenta!

La combustione

Quasi tutti gli alcani possono essere utilizzati come combustibili liquidi o gassosi.
Gli idrocarburi bruciano all’aria dando anidride carbonica e acqua e sviluppando una notevole quantità di calore, che è il principale prodotto di questa reazione ossidativa.
La reazione di combustione in presenza dell’ossigeno dell’aria non è spontanea a temperatura ambiente, ma deve essere innescata, ad esempio con una fiamma.
Nella reazione, ogni atomo di carbonio si trasforma in diossido di  carbonio e l’idrogeno si unisce all’ossigeno per formare acqua.
Anche la combustione procede attraverso un meccanismo radicalico molto complesso.
L’equazione stechiometrica della combustione totale di un alcano

(3n + 1)
CnH2n+2 +  ‐‐‐‐‐‐‐‐‐‐‐‐‐  O2 → n CO2 + (n + 1)
2

In realtà però essa non viene mai rigorosamente rispettata. Anche in presenza della corretta quantità di ossigeno, e specialmente se l’idrocarburo è molto complesso, rimangono residui di molecola non combusti, come si  verifica nei gas uscenti dai tubi di scarico dei motori diesel e nei residui carboniosi che si accumulano all’interno delle caldaie e ne causano il deterioramento.
La combustione avviene nei cilindri delle auto, nelle centrali termoelettriche, nelle case quando si utilizza il GPL o il metano.
Per il metano e l’ottano le reazioni di combustione sono così schematizzabili:

CH4 + 2 O2 → CO2 + 2 H2O + calore

C8H18 + 12,5 O2 → 8CO2 + 9 H2O + calore

Se la combustione avviene in difetto di aria, può accadere che oltre all’anidride carbonica si formi anche una certa quantità di ossido di carbonio (CO) che rende estremamente tossico l’ambiente.
Ecco il motivo per cui bisogna bruciare questi combustibili in buone condizioni di ventilazione, per evitare disastrose conseguenze come quelle a cui si va incontro quando si mantiene acceso il motore dell’auto all’interno di un garage o di un qualsiasi altro luogo chiuso.

14 Dicembre 2008 Pubblicato da Francesca Brigida commenta!
« Pagina precedentePagina successiva »

Contatti

Per qualsiasi tipo di informazione, suggerimento, proposta, critica o richiesta, scrivici a info@chimicaorganica.net

Tag popolari

acidi Aforismi alcani alcheni anidride carbonica antipodi ottici atomi primari atomi secondari atomi terziari basi butano carbonio carbonio asimmetrico chimica chimica organica chiralità delocalizzazione elettronica dispense chimica doppio legame frasi GPL idrocarburi idrocarburi insaturi idrocarburi saturi isomeri isomeria isomeria di posizione isomeria di struttura isomeria geometrica isomeria ottica isomeri conformazionali isomeri geometrici laboratorio Lavoisier legame pigreco metano paraffine radicali liberi reazioni reazioni organiche serie omologa sostituenti stereoisomeri stereoisomeria teoria chimica